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Introduction
The backstepping method

From controllability to stabilization

Example: the water tank



Ht + (HV )x = 0,

Vt +
(
gH + V 2

2

)
x

= −u(t)︸ ︷︷ ︸
acceleration

,

V (t, 0) = V (t, L) = 0, ∀t ≥ 0.

Linearised around (Hγ , V γ) := (H0 − γx, 0) (constant
acceleration):
ht + hγ(V )x = 0,
vt + g (h)x = −u(t),
v(t, 0) = v(t, L) = 0, ∀t ≥ 0.

Controllable. Stabilizable?
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Introduction
The backstepping method

From controllability to stabilization

An even simpler model

{
αt + αx = u(t)ϕ(x), x ∈ [0, L],
α(t, 0) = α(t, L), ∀t ≥ 0,

Controllable if

c√
1 +

∣∣∣2iπnL ∣∣∣2m ≤ |ϕn| ≤
C√

1 +
∣∣∣2iπnL ∣∣∣2m , ∀n ∈ Z,

ϕ ∈ Hm−1
per

∩Hm
(pw)

(m ≥ 1)
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Introduction
The backstepping method

From controllability to stabilization

Results

Theorem (Rapid stabilization in Sobolev norms)

Let m ≥ 1. If the system is controllable in Hm
per and ϕ has extra

piecewise regularity, then the system can be stabilized
exponentially for any decay rate.

‖α(t)‖m ≤ CeλLe−λt‖α0‖m, ∀t ≥ 0,

Theorem (Finite-time stabilization in Sobolev norms)

Under the same conditions, there exists a feedback law that
stabilizes the system in finite time T = L.
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The backstepping method

From controllability to stabilization A historical example

Stabilization of hyperbolic systems

Approaches to solve a stabilization problem:
Gramian approach (abstract), Riccati equations...
Lyapunov functionals: find a feedback that allows for a
(exponentially) decreasing energy functional

Backstepping
Volterra transformations: used on heat (Krstic et al.,
Coron-Nguyen), wave (Krstic et al.), KdV (Coron-Lu,
Cerpa-Coron, Shengquan Xiang), hyperbolic balance laws...
Fredholm transformations: Kuramoto-Shivashiinski
(Coron-Lu), Schrödinger (Coron et al.), Transport (today).

Christophe Zhang Internal stabilization of transport systems



Introduction
The backstepping method

From controllability to stabilization A historical example

Stabilization of hyperbolic systems

Approaches to solve a stabilization problem:
Gramian approach (abstract), Riccati equations...
Lyapunov functionals: find a feedback that allows for a
(exponentially) decreasing energy functional
Backstepping

Volterra transformations: used on heat (Krstic et al.,
Coron-Nguyen), wave (Krstic et al.), KdV (Coron-Lu,
Cerpa-Coron, Shengquan Xiang), hyperbolic balance laws...
Fredholm transformations: Kuramoto-Shivashiinski
(Coron-Lu), Schrödinger (Coron et al.), Transport (today).

Christophe Zhang Internal stabilization of transport systems



Introduction
The backstepping method

From controllability to stabilization A historical example

Stabilization of hyperbolic systems

Approaches to solve a stabilization problem:
Gramian approach (abstract), Riccati equations...
Lyapunov functionals: find a feedback that allows for a
(exponentially) decreasing energy functional
Backstepping
Volterra transformations: used on heat (Krstic et al.,
Coron-Nguyen), wave (Krstic et al.), KdV (Coron-Lu,
Cerpa-Coron, Shengquan Xiang), hyperbolic balance laws...

Fredholm transformations: Kuramoto-Shivashiinski
(Coron-Lu), Schrödinger (Coron et al.), Transport (today).

Christophe Zhang Internal stabilization of transport systems



Introduction
The backstepping method

From controllability to stabilization A historical example

Stabilization of hyperbolic systems

Approaches to solve a stabilization problem:
Gramian approach (abstract), Riccati equations...
Lyapunov functionals: find a feedback that allows for a
(exponentially) decreasing energy functional
Backstepping
Volterra transformations: used on heat (Krstic et al.,
Coron-Nguyen), wave (Krstic et al.), KdV (Coron-Lu,
Cerpa-Coron, Shengquan Xiang), hyperbolic balance laws...
Fredholm transformations: Kuramoto-Shivashiinski
(Coron-Lu), Schrödinger (Coron et al.), Transport (today).

Christophe Zhang Internal stabilization of transport systems



Introduction
The backstepping method

From controllability to stabilization A historical example

Summary

1 Introduction

2 The backstepping method
A historical example

3 From controllability to stabilization
Pole-shifting in finite dimension
Strategy of proof for the transport equation

Christophe Zhang Internal stabilization of transport systems



Introduction
The backstepping method

From controllability to stabilization A historical example

The Krstic parable
Unstable heat equation:{

ut − uxx = λx,

u(0) = 0, u(1) = U(t).
(1)

Transformation (Volterra):

w(t, x) = u(t, x)−
∫ x

0
k(x, y)u(t, y)dy

Exponentially stable target system:{
wt − wxx = 0,
w(0) = 0, w(1) = 0.

(2)

Control design: U(t) =
∫ 1

0
k(1, y)u(t, y)dy.

Christophe Zhang Internal stabilization of transport systems



Introduction
The backstepping method

From controllability to stabilization A historical example

Kernel equations

T is a kernel operator: f 7→ f −
∫ x

0
k(x, y)f(y)dy.

Target equation Formal computations (IBP...)−−−−−−−−−−−−−−−−−−→ PDE for k(x, y).

Kernel equations on T := {0 ≤ y ≤ x ≤ 1}:
kxx − kyy = λk,

k(x, 0) = 0,

k(x, x) = −λx2

(3)
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Introduction
The backstepping method

From controllability to stabilization A historical example

Solving the kernel equation

Wave equation with special boundary conditions.
Variable change:

ξ = x+ y, η = x− y

New equation on new domain T ′:
4Gξη(ξ, η) = λG(ξ, η),

G(ξ, ξ) = 0,

G(ξ, 0) = −λξ4 .
(4)

Idea: integral equation, iterative scheme, exact solution.

Christophe Zhang Internal stabilization of transport systems
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The backstepping method

From controllability to stabilization A historical example

Inverse transformation

k(x, y) = −λy
I1
(√

λ(x2 − y2)
)

√
λ(x2 − y2)

Good regularity: inverse can be searched as

u(t, x) = w(t, x) +
∫ x

0
l(x, y)w(t, y)dy

Almost the same computations as before:

l(x, y, λ) = k(x, y,−λ).

Christophe Zhang Internal stabilization of transport systems
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From controllability to stabilization A historical example

Remarks

k is regular: formal computations actually valid.
Inverse fairly easy to find.
Explicit feedback law!

15 years ago.
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The backstepping method

From controllability to stabilization
Pole-shifting in finite dimension
Strategy of proof for the transport equation

Classical pole-shifting

Consider the finite-dimensional controllable control system

ẋ = Ax+Bu(t), x ∈ Cn, A ∈Mn(C), B ∈Mn,1(C).

Kalman condition: rank{AnB | n = 0, · · · , n− 1} = n.

Poleshifting: ∀P, ∃K ∈M1,n(C), χ(A+BK) = P .
Idea: Brunovski normal form
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Introduction
The backstepping method

From controllability to stabilization
Pole-shifting in finite dimension
Strategy of proof for the transport equation

Brunovski form for PDEs?

D.L. Russell, Canonical forms and spectral determination for a
class of hyperbolic distributed parameter control systems, JMAA
62, 1978.

∂

∂t

(
u
v

)
−
(

0 1
1 0

)
∂

∂x

(
u
v

)
−A(x)

(
u
v

)
= g(x)u(t) (5)

Canonical form: time-delay system

ζ(t+ 2) = e2αζ(t) +
∫ 2

0
p(2− s)ζ(t+ s)ds+ u(t) (6)

Christophe Zhang Internal stabilization of transport systems
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From controllability to stabilization
Pole-shifting in finite dimension
Strategy of proof for the transport equation

Finite-dimensional backstepping
Another way of shifting poles: map

ẋ = Ax+B(Kx+ v(t))

into the stable system

ẋ = (A− λI)x+Bv(t).

The mapping T should be invertible and satisfy

T (A+BK) = AT − λT,
TB = B.

“Backstepping equations”
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The backstepping method

From controllability to stabilization
Pole-shifting in finite dimension
Strategy of proof for the transport equation

Finite-dimensional backstepping

Proposition
If the system (14) is controllable, then there exists a unique pair
(T,K) satisfying conditions (16)

Proof in Brunovski form.

(A− λI)T − TA = BK,
TB = B.

Structural condition for Brunovski normal form (initialization
of iterative proof)
Sets a nice form of the problem.

K is a parameter of T .
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Introduction
The backstepping method

From controllability to stabilization
Pole-shifting in finite dimension
Strategy of proof for the transport equation

From finite-dimension to PDEs
Suppose A is diagonalizable, with eigenvectors and eigenvalues
(ei, λi), λ 6= λi, ∀i.

((A− λI)T − TA)

ei

= BK

ei

, ∀i

Tei = (Kei)(A− (λ+ λi)I)−1B.

1 Basis property: fi := ((A− (λ+ λi)I)−1B) is a basis.
2 Definition of (T,K)

TB = B

B∗T ∗fi = B∗fi → (Kei) = B∗fi
B∗ei

.

Controllability: B∗ei 6= 0 .
3 Invertibility of T Also with controllability.

Christophe Zhang Internal stabilization of transport systems
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Introduction
The backstepping method

From controllability to stabilization
Pole-shifting in finite dimension
Strategy of proof for the transport equation

Our system

Linear feedbacks:

〈α(t), F 〉 =
∑
n∈Z

Fnαn(t) =
∫ L

0
F̄ (s)α(s)ds

Closed-loop system:{
αt + αx = 〈α(t), F 〉ϕ(x), x ∈ [0, L],
α(t, 0) = α(t, L), ∀t ≥ 0.

Target system: {
zt + zx + λz = 0, x ∈ (0, L),

z(t, 0) = z(t, L), t ≥ 0.

Christophe Zhang Internal stabilization of transport systems



Introduction
The backstepping method

From controllability to stabilization
Pole-shifting in finite dimension
Strategy of proof for the transport equation

Kernel equations

T is a kernel operator: f 7→
∫ L

0
k(x, y)f(y)dy.

Operator equation Formal computations (IBP...)−−−−−−−−−−−−−−−−−−→ PDE for k(x, y).

(A−λI)T − TA
= TBK


kx + ky + λk +

∫ L

0
k(x, s)ϕ(s)dsK̄(y) = 0,

k(0, y) = k(L, y),
k(x, 0) = k(x, L).

TB = B

∫ L

0
k(x, s)ϕ(s)ds = ϕ(x), ∀x ∈ [0, L].

Christophe Zhang Internal stabilization of transport systems
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k(0, y) = k(L, y),
k(x, 0) = k(x, L).

TB = B

∫ L

0
k(x, s)ϕ(s)ds = ϕ(x), ∀x ∈ [0, L].
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When is T invertible?

en := 1√
L
e

2iπn
L , kn := Te−n.

T invertible ⇔ (kn) is a basis.

k′n + λnkn = −K−nϕ

kn = −K−n
L

1− e−λL e
−λxe−n ? ϕ︸ ︷︷ ︸

Riesz basis of Hm
per

Controllability gives a basis property!
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Invertibility and feedback

Tα =
∑
n∈Z

αnTen, α ∈ Hm
per

Invertible iff |Kn| ∼ nm (nmαn ∈ `2).

TB = B

TB = B → bi(Kei) = b̃i.

Controllability:

bi 6= 0→ Kei = b̃i
bi

But...ϕ /∈ Hm
per. Tϕ ?

Weak condition:

ϕ(N) Hm−1
per−−−−→

N→∞
ϕ, Tϕ(N) ⇀ ϕ

iff Kn := − 2
Lϕn

1− e−λL

1 + e−λL
∼ nm

Dirichlet convergence theorem
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Almost done...

Kernel equations Derived formally using the TB = B
condition!

Basis property
Definition of (T,K) → weak TB = B!
Invertibility of T

Operator equality T (A+BK) = AT − λT on

D(A+BK) :=
{
α ∈ Hm+1 ∩Hm

per, −αx + 〈α, F 〉ϕ ∈ Hm
per

}
.

Well-posedness of the closed-loop system. Lumer-Phillips
theorem (study the regularity of the feedback law).
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Conclusions

Explicit feedback law.

Fn := H(λ)/ϕn
Not continuous (but simple). |Kn| ∼ nm

Works for any λ > 0.
Even works for λ = +∞.

H(λ) −−−→
λ→∞

−2/L

Works thanks to exact controllability.
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